If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-14=0
a = 3; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·3·(-14)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*3}=\frac{0-2\sqrt{42}}{6} =-\frac{2\sqrt{42}}{6} =-\frac{\sqrt{42}}{3} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*3}=\frac{0+2\sqrt{42}}{6} =\frac{2\sqrt{42}}{6} =\frac{\sqrt{42}}{3} $
| -8/3x=-7 | | 3(4)-8=2b+2 | | 6–5x=16 | | X-x^2+56=0 | | X-x^2=-56 | | 37+2x+7=90 | | 11k=2 | | 2a-4=3a-8 | | (d-2)^2=16 | | 2(x+14)=-3(x+5) | | x7−10x=67 | | 8=6-a | | x4–7x2–18=0 | | 5^2x+5^x-56=0 | | (2x-6)+(60-x)=22 | | 25-5x=-5 | | n+140=336 | | 0.25/0.5=1.5/x | | 5p-2=3(p-4) | | 30k+1=18k+22 | | 4m2-4m-3=0 | | 15x+6x=84 | | 3+7x=-5x+75 | | -16x2+128x+96=0 | | 2/1y+5/2=42/5 | | 2/1y+2/5=42/5 | | 12a+12=2a-78 | | ⅔(9y-15)=14 | | 3^5x=4 | | 4x+3=5x-7=7-66 | | n+22=50 | | 40=4n*2 |